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Abstract

Our goal is to develop a feature based framework for
data mining and forecasting from geophysical data
�elds. These data may be generated from either nu-
merical simulation models or space based platforms.
This paper focuses on pertinent features from sea sur-
face temperature (SST) �elds that are observed with
the AVHRR satellite. Our contribution consist of
three components: (1) A method for tracking feature
velocities from from uid motion with incompressibil-
ity constraint, (2) a method for localizing singular
events such as vortices and saddle points from un-
derlying feature velocities, and (3) application of our
protocol to 12 years of high resolution real data to re-
veal novel seasonal and inter-annual trends based on
computed events.

1 Introduction

The current generation of environmental satellites
and numerical simulation models generates a massive
amount of spatio-temporal data. These data repre-
sent di�erent geophysical �elds (such as sea surface
temperature, wind stress, precipitation) at di�erent
spatial and temporal resolutions. For example, the
NASA MODIS sensor could potentially generate 200
Gigabytes of data per day, where 50-100 Gigabytes of
it are ocean products. Similarly, a 20 year ocean cir-
culation model, with O(5� 10) Km resolution, at 20
minute time steps produces about 4 Terabytes of prog-
nostic data. Such a vast amount of data poses a serious
performance, management, and comprehension prob-
lem. Furthermore, existing comparative analyses of
climate codes are based on aggregate measures such
as average temperature and raindrops, and they ig-
nore higher-level feature activities. Particular features
of interest include vortices and saddle points. Ocean
vortices are an important component of global circula-
tion because they are an e�cient transport and mix-
ing mechanism. Similarly, atmospheric vortices are
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important for meteorological studies, e.g., their fre-
quency, strength, duration, and tracks. If vortices can
be detected and tracked, pertinent questions can be
asked about other sources of data.

This paper focuses on a feature-based representa-
tion of spatio-temporal sea surface temperature (SST)
data for providing an intelligent summary of the un-
derlying images and to facilitate correlation studies
between di�erent types of events (in di�erent �elds)
for hypothesis testing, comparative analysis of numer-
ical simulation and observational data, and e�cient
visualization of meaningful information. An example
of SST data is shown in Figure 1. This is achieved by
computing the feature velocities from the uid motion
and then computing pertinent features from the com-
puted vector �eld. We have applied our methods to 12
years of sea surface temperature data. The data set
has a spatial resolution of 9� 18 Km that is recorded
by the AVHRR sensor once every two days. Speci�-
cally, we present

� A novel formulation of ow �eld computation that
incorporates an incompressibility constraint for
tracking uid motion. The algorithm is then im-
plemented through a multigrid representation to
reduce the computational complexity.

� A robust approach for detecting and tracking vor-
tices and saddle points from the vector �eld rep-
resentation. Vortices are important in two ways.
First, they are an important component of the
global circulations. Thus, their duration, direc-
tion, and localization are valuable to climatic
studies. Second, they are singular events that
provide a compact representation of the spatio-
temporal images. Thus, they can be used as in-
dices for representation and quick access. Addi-
tionally, we show that our approach is applicable
to other geophysical �elds as well.

� An interesting climatic result indicating that the
number of singular events (in SST data) is sea-
sonally correlated and that the vortices have a
preferred localization. This is observed by accu-
mulating features over a 12 year period and repre-
senting their occurrences as a probability density
function.



Organization of paper is as follows. Section 2 re-
views previous models of ow �eld computation for
uid motion. Section 3 outlines the details of our
approach that includes ow computation and feature
extraction from SST data. Section 4 shows an appli-
cation of feature based analysis for climatic studies.
Section 5 concludes the paper.

Figure 1: An example of SST image (Date: 1-2-1998).

2 Previous Work
Measurement and analysis of feature velocities is

often referred to as computation of optical ow in the
imaging literature. Review and enhancement of these
techniques can be found in [3, 7]. However, tracking
uid motion poses additional constraints that have
been addressed by only a few papers. In this con-
text, we are not interested in tracking compressible
uid that focuses on clouds and images obtained from
turbulent ows [9, 12]. These systems pose an a�ne
model over the time varying imagery and ignore the
inherent incompressibility constraint.

Cohen and Herlin [4] proposed a non-quadratic
regularization technique for solving the optical ow
constraint equation and applied it to oceanographic
images. Their approach is applicable to irregularly
spaced images with missing data. The regularization
problem was solved by �nite di�erence methods with
�ner tessellation near the motion boundary. Their
method does not incorporate any constraints imposed
by the uid motion. Amini [1] extended the Horn-
Schunck equation to include uid X-ray images of con-
trast velocity in arteries. This was expressed in terms
of zero divergence of ow �eld to simplify the solution.
A major drawback of his approach is that the corre-
sponding partial di�erential equations are of a higher
order.

Raw oceanic data consists of satellite swath data
and artifacts introduced by clouds. Modern oceanic
processes perform cloud removal and time-space in-
terpolation to produce dense data for daily, regional,
and global �elds. These data are then calibrated with
in-situ measurements to produce a dense tempera-
ture map at each point on the oceanic grid. Dense
oceanic data is the starting point for the proposed
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Figure 2: Block diagram of our SST system

analysis that should satisfy the uid incompressibil-
ity constraint. Additionally, because the data resides
in the spherical coordinate system, special treatment
is needed. Our formulation operates on dense data,
does not require solution of higher order PDEs, and
has been implemented in a multigrid framework for
better computational e�ciency.

With respect to feature extraction from vector �eld,
previous approaches rely on eigenvalue analysis from
the local Jacobian [10, 11]. Our experience indicates
that feature extraction is highly dependent on the
smoothness of ow computation. If the ow �eld is
regularized (as it is in our case) then events of interest
can be easily localized. We will present an elegant ap-
proach for detection of vortices and saddle points that
has proved to work e�ectively in our data sets.

3 Approach
Our ultimate goal is to represent each geophysical

�eld with a feature set to explore data fusion, data
mining, and forecasting. The lay-out is shown in Fig-
ure 2, and each step is summarized below.

1. Computation of feature velocities: The classic
Horn-Schunck model is integrated with the in-
compressibility constraint (i.e. zero-divergence
condition) and implemented using multigrid
�nite-di�erence method. The feature velocities
are computed normal to the isothermals.

2. Extraction of events: Singular events correspond-
ing to vortices and saddle points are extracted
from the underlying vector �eld. These events
provide a representation of raw data that is not
only information preserving, but also provides the
basis for hypothesis testing. We will also show
that these techniques are applicable to other geo-
physical �elds as well.

3. Probabilistic analysis: Singular events are accu-
mulated for seasonal and inter-annual trend anal-



Figure 3: Critical points with non-zero divergence:
(left) a sink; (right) a source.

ysis. We will show that even with simple tech-
niques, new insights can be gained.

4. Data fusion, mining, and forecasting: This is an
on-going work with limited results at the present
point.

3.1 Computation of Feature Velocities

Let I(x; y; t) be the image at time t, with (u; v) as
the velocity vector at each point. The ow �eld equa-
tion with brightness constancy assumption is given by:

dI(x; y; t)

dt
= Ixu+ Iyv + It = 0 (1)

where the subscripts x, y, and t represent the par-
tial derivatives. Horn and Schunck [6] constrained the
problem by incorporating local smoothness in the ow.
This is given by:

(u�; v�) = argminE :=
R R

(Ixu+ Iyv + It)
2

+�(jruj2 + jrvj2)dxdy
(2)

where � is the weighting factor of the smoothness
term, and the equation is evaluated in the spherical
coordinate system. The velocity vector due to (incom-
pressible) uid motion has to have zero divergence at
each point, i.e. ux+vy = �wz Under weak constraints,
the above equation can be expressed as ux + vy = 0.
In this context, incompressibility is enforced along the
temperature-gradient (normal to iso-thermals). A vec-
tor �eld with zero-divergence does not contain sinks
and sources. A counter-example is shown in Fig. 3.

This constraint is expressed as a penalty term in
the energy functional:

(u�� ; v
�

�) = argminE := 1
2

R R
[(Ixu+ Iyv + It)

2

+ �(jruj2 + jrvj2) + �(ux + vy)
2]dxdy

(3)
If � ! +1 , then (u�� ; v

�

�) converges to the solution
of Eq.2 subjected to ux + vy = 0.

The Euler-Lagrange equations of (3) are

�
�Ix(Ixu+ Iyv + It) + (�+ �)uxx + �uyy + �vxy = 0
�Iy(Ixu+ Iyv + It) + �vxx + (�+ �)vyy + �uxy = 0

(4)

The above PDE are solved with �nite di�erence meth-
ods. Recall that 2nd-order derivatives of u's (and sim-
ilarly v's) are given by [8]:

uxxjj;i =
uj+h;i+uj�h;i�2uj;i

h2

uyyjj;i =
uj;i+h+uj;i�h�2uj;i

h2

uxyjj;i =
uj+h;i+h+uj�h;i�h�uj+h;i�h�uj�h;i+h

4h2

(5)

Substituting them into Eq. (4), we have�
(I2x +

4�+2�

h2
)uj;i + IxIyvj;i = �1

IxIyuj;i + (I2y +
4�+2�

h2
)vj;i = �2

(6)

where

�1 = �IxIt +
�+�

h2
(uj+h;i + uj�h;i) +

�
h2
(uj;i+h+

uj;i�h) +
�

4h2
(vj+h;i+h + vj�h;i�h � vj+h;i�h � vj�h;i+h)

�2 = �IyIt +
�
h2
(vj+h;i + vj�h;i) +

�+�

h2
(vj;i+h+

vj;i�h) +
�

h2

4
(uj+h;i+h + uj�h;i�h � uj+h;i�h � uj�h;i+h)

uj;i and vj;i can be represented by �1 and �2:�
uj;i =

1
D
[(I2y +

4�+2�

h2
)�1 � IxIy�2]

vj;i =
1
D
[�IxIy�1 + (I2x +

4�+2�
h2

)�2]
(7)

where D = 4�+2�

h2
(Ix2 + I2y ) + (4�+2�

h2
)2. Then an

iterative method can be described as(
u
(n+1)

j;i = 1
D
[(I2y +

4�+2�

h2
)�

(n)

1 � IxIy�
(n)

2 ]

v
(n+1)

j;i = 1
D
[�IxIy�

(n)

1 + (I2x +
4�+2�
h2

)�
(n)

2 ]

(8)

where (u
(n)

j;i ; v
(n)

j;i ) is the velocity �eld at the n-th step.

The process converges when (8) approaches (6), which
means that an optimal solution has been found. The
convergence of the iteration de�ned by (8) is guar-
anteed, but due to space limitation, the proof is not
given here. Note that if � = 0 then this formulation
is identical to the original Horn-Schunck model.

3.1.1 Multigrid Approach

The solution to the above equations is expressed
through a multigrid technique to reduce the com-
putational complexity. Let h be the window size
where �nite di�erences are computed. Then by set-
ting h = 2K ; 2K�1; � � � ; 1 successively, we can prop-
agate from coarse to �ne grid through simple linear
interpolation and re�nement. Linear interpolation is
used because motion is locally smooth. It simply sets
an initial condition to re�ne the solution at the next
level. This multigrid method can be described as fol-
lows:

� STEP 0. h = 2K

� STEP 1. Repeat the following algorithm until it con-
verges:



for (i = 0; i < M ; i = i+ h)

for (j = 0; j < N ; j = j + h) let�
uj;i =

1
D
[(I2y +

4�+2�

h2
)�

(n)

1 � IxIy�
(n)

2 ]

vj;i =
1
D
[�IxIy�

(n)

1 + (I2x + 4�+2�

h2
)�

(n)

2 ]

where M �N is the image size.

� STEP 2. Linear interpolation.

for (i = 0; i < M ; i++)f

i0 = [i=h] � h; ri = (i� i0)=h;

for (j = 0; j < N ; j ++) f

j0 = [j=h] � h; rj = (j � j0)=h;

uj;i = (1� ri)(1� rj)uj0;i0 + ri(1� rj)uj0;i0+h+
(1� ri)rjuj0+h;i0 + rirjuj0+h;i0+h

vj;i = (1� ri)(1� rj)vj0;i0 + ri(1� rj)vj0;i0+h+
(1� ri)rjvj0+h;i0 + rirjvj0+h;i0+h

g g

� STEP 3. if h = 1, stop; else h = h=2, goto STEP 1.

Note that in STEP 1, all the pixels are updated
asynchronously and not simultaneously. Why is the
asynchronous iteration faster than the synchronous?
An intuitive explanation is that the pixels that have
been updated will be used to update their neighbor-
hood. Even though this idea is rather simple, it can
speed up the convergence greatly. In fact, it is a de-
terministic version of the classic Gibbs sampler [5].
3.2 Evaluation of Feature Velocities

Both � and � of the regularization parameters are
important for accurate measurement of feature ve-
locities. We have compared our measurements with
ground truth data (obtained from surface drifters) and
veri�ed that our measurements are consistent. For ex-
ample, from Nov. 5, 1986 to Nov 18, 1997, Aoki et al.
[2] indicated a motion �eld of 3-5cm/sec to the west
from 35� to 40� N in the region 30� to 40�N and 140�

E to 170� W. Our measurements in the same area in-
dicates a motion of 3.7 cm/sec.
3.3 Detection of Vortices and Saddle

Points
Singularities in the ow �eld can provide a compact

abstraction in the velocity �eld. This issue has been
addressed in literature [10], where an algorithm based
on the analysis of local Jacobian was proposed. Here,
we propose an alternative method for robust localiza-
tion of events and their subsequent tracking.

Let F = (u; v) be a vector �eld and J be a Jordan
curve with no critical point on it. The index of J is
de�ned by

Index(J) =
1

2�

I
J

udv � vdu

u2 + v2

Because it is not easy to localize the critical points, we
compute the index over the entire �eld. At each point
P , we choose a small circle JP around P and compute
Index(JP ). The ow �eld (u; v) can then be classi�ed
according to:

1. The index of a vortex is equal to +1 (the classi�-
cation of singular points in a vector �eld is given
in [10]), and

2. The index of a saddle point is equal to �1.

There is no node in the vector �eld because of the
zero-divergence constraint, but singularities do occur.
Recall that a point (x; y) is singular i��

u(x; y) = 0
v(x; y) = 0

(9)

However, using the above equation to localize singu-
larities leads to computational instability. A better
approach is to exploit the inherent local minimum ve-
locity volume to simplify the problem. Thus,

� Step 1: Find all local minima of the velocity �eld:

S = f all the local minima of
p
u(x; y)2 + v(x;y)2g

� Step 2: 8(x; y) 2 S:

(1) Let R = 1
2
maxfrjS

T
Jr(x;y) = �g where Jr(x;y) is

the circle centered at (x; y) with radius r.

(2) Compute the index of JR(x;y), that is,

Index(JR(x;y)) =
1

2�

I
JR
(x;y)

udv� vdu

u2 + v2

(3) If Index(JR(x;y)) = 0, then (x;y) is not singu-

lar; if Index(JR(x;y)) = 1, then (x; y) is a vortex; if

Index(JR(x;y)) = �1, then (x; y) is a saddle point.

One important characteristic of vortex is its \size"
and a simple solution is proposed and implemented. If
a point a (x; y) is a vortex, then its size R�(x; y) can
be de�ned as:

R�(x; y) = maxfRjIndex(JR(x;y)) = 1g

that is to say, R�(x; y) is the largest R such that the
index of JR(x;y) continues to be 1.

Fig. 4 shows the feature velocities (date: the 200th
day of the year 1992) corresponding to a pair of con-
secutive images. Each vortex is marked by red blocks.
A circle drawn around each vortex indicates its size.
The direction of feature velocities are shown with yel-
low arrows. The magnitude of these velocity vectors
are shown with the underlying intensity distribution.

4 Feature based climatic studies
We have applied the above technique to 12 years of

SST data at 18 Km resolution. The data are dense
with temporal resolution that is 2 days apart. A
database is then created for seasonal and inter-annual
studies. Each singular event is represented with a
number of attributes, which can be classi�ed into the
following categories:



Figure 4: Feature velocities and computed vortices:
Feature directions are shown with yellow arrows, and
their corresponding magnitudes are shown with the
underlying brightness map. Vortices are marked with
a red block, and their size is encoded with a blue cir-
cle. This result is generated from a pair of consecutive
images around day 200 from 1992.

Year Day 1-90 91-181 182-273 Day 274-365

1986 5194 3991 5126 4425
1987 4970 3881 5382 4455
1988 5119 3991 5241 4854
1989 5051 4303 5060 4230
1990 4933 4183 5298 4470
1991 5166 4133 5542 4870
1992 5254 4273 5446 4617
1993 4988 4043 5247 4171
1994 5057 3942 5071 3380
1995 5109 4212 5089 4419
1996 5283 4090 5210 4847
1997 5422 4280 5278 4519
1998 5095 4074 5133 4534

Table 1: Computed number of events (vortices and
saddle points) in each season and each year of SST
data.

1. Temporal attributes: that include year, season,
and date.

2. Singularity types: that include event types, e.g.
vortex or saddle point.

3. Spatial attributes: that include location, size of
vortices, their direction, and speed.

4. Physical attributes at singular locations: that in-
clude temperature, wind stress, and precipitation.
Often these measurements (wind stress and pre-
cipitation) are not available at the same spatial
and temporal resolution. Therefore, at a speci�c
location, these quantities are interpolated from
neighboring values.

4.1 Trend analysis in feature database
The proposed database allows both seasonal and

inter-annual trend analysis. Furthermore, dynamic
behavior of vortices can be tracked for their preferred
birth location and duration. Table 1 shows the num-
ber of events (vortices and saddle points) for each year
and each season. This table indicates (almost) equal
number of vortices and saddle points in each year.
Furthermore, the number of events in each season (in
both northern and southern hemisphere) is highly cor-
related. The number of events is higher in the �rst 90
days than the second 90 days. It rises again during
the third 90 days and then drops during the fourth
90 days. This seasonal periodic e�ect has not been
observed in the past and it is currently being investi-
gated.

The long term global climatic study is performed
by constructing a probability density distribution for
seasonal and inter-annual periods. The density dis-
tribution is simply the probability of occurrences of
vortices and saddle points at a speci�c spatial loca-
tion. An immediate conclusion is that PDF is not
uniform and that events have a preferred localization.



One particular observation indicates preferred inter-
annual localization of events in the sub-polar region
and Gulf stream.

5 Conclusions
In this paper, we formulated ow computation

in oceanographic images as a constrained variational
problem with incompressibility constraint and devel-
oped a multigrid approach for its e�cient implemen-
tation. We then computed events of interest, e.g. vor-
tices and saddle points, from regularized vector �elds.
The technique was applied to 12 years of high resolu-
tion data (from AVHRR spacecraft) where we showed
that (a) the number of events in each season is highly
correlated, and (b) events have a preferred localization
in 40� South and and Gulf stream. This has been the
�rst global climatic study of the events in SST data,
which has been made possible by utilizing techniques
that are evolved from the �eld of computer vision.
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